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Abstract

Vampire produces highly usable and informative proofs, but now they are even better and this

paper explains how. It is important that the proofs produced by automated theorem provers are

both understandable and machine checkable. Producing something that satisfies both of these goals is

challenging, especially when dealing with complex steps performed by the solver. The main areas where

proof output has been improved for understanding include (i) introduction of new symbols (such as

Skolem functions) in preprocessing, (ii) representation of unifiers (for example, in resolution steps), and

(iii) presentation of AVATAR proofs. These improvements will be illustrated via a number of examples.

For checkable proofs Vampire provides a mode that outputs the proof as a number of individual (TPTP)

problems that can be independently checked. This process is explained and illustrated with examples.

1 Introduction

Vampire [5] is an automated theorem prover for first-order logic. It was one of the first provers
to produce full proofs (it was producing proofs when the CASC competition introduced them
in 2001) and supports the TPTP derivation format [12] as well as other output formats.

The proof output of Vampire has changed over the years, following the needs of users and
reacting to changes in the prover. This paper will not document these changes but report on
the current state. In most cases the notion of better proof output is subjective. We have made
no attempts to measure this claim but note that better does not necessarily mean shorter but
more usable.

The most recent changes to proof output where prompted by two developments. Firstly, the
introduction of the AVATAR [13, 9, 8] architecture highlighted the need to be able to represent
clause splitting in proofs in a reasonable way. Secondly, the growing use of Vampire in program
analysis tasks, where proofs are analysed, highlighted the need to make certain proof steps
(such as unification) more explicit. These improvements are an ongoing effort.

Another topic that is covered in this paper is that of proof checking. This is an area of
growing importance as (i) automated theorem provers and the calculi they use become more
complex, and (ii) the application of automated theorem provers becomes more automated.
There are many examples of soundness bugs only being highlighted in theorem provers a long
time after they were introduced, even in Vampire. Being able to independently check proofs
is essential for the usability of such systems and, as discussed later, any proof format should
support proof checking.
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The paper is structured as follows. Section 2 reviews the general structure and contents of
proofs produced by Vampire. Section 3 describes improvements made to proof steps introducing
fresh symbols. Section 4 presents a proof format that makes unifiers apparent. Section 5
discusses how AVATAR proofs are presented. Section 6 gives a note on proof checking. Section 7
concludes with a brief discussion of future plans.

2 Background on Proofs in Vampire

We review the structure and contents of proofs produced by Vampire.

2.1 What is a Proof?

This isn’t a paper about logic, theorem proving or proof theory. Other papers exist that can
give reasonable introductions to these topics. We assume the reader is broadly familiar with
how theorem provers, and Vampire in particular, works. If not, we refer the reader to [5].

In our setting, a proof is a directed-acyclic-graph (DAG) with a single sink node: the empty
clause. Source nodes are things that are taken to be true. These are either axioms from the
input problem, theory axioms, or definitions introducing fresh symbols to the proof search. A
node is a formula (after preprocessing, a clause) and edges represent inference steps where all
edges leading into a node form the premises for that inference.

Let us use a short example (also used in [5]) to demonstrate. Consider the following problem
about group theory (if all elements in a group have order 2 then the group is Abelian):

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)
Conjecture: ∀x∀y(x · y = y · x)

The proof of this problem is given in Figure 1. We have labelled the four separate parts of the
proof. These are not the only kinds of steps that can appear in a Vampire proof (see below) but
in general the input formulas will appear first, followed by preprocessing and then application
of inference rules belonging to some calculus. As mentioned previously, the last step is the
derivation of the empty clause.

Each step in the proof has the following structure

126. mult(X1,X2) = mult(X2,X1) [superposition 24,90]

Number Formula or Clause Inference Premises

and therefore represents a node in the proof DAG where each node is numbered so that
it can be identified in the premises of another node. This proof step represents the following
inference

mult(X0, mult(X0, X1)) = X1 mult(X2, mult(X1, X2)) = X1

mult(X1, X2) = mult(X2, X1)

note that no information about unifiers or selected literals (although these are unit clauses) is
given, this issue is discussed further in Section 4.
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Refutation found. Thanks to Tanya!

1. ! [X0] : mult(e,X0) = X0 [input]

2. ! [X0] : e = mult(inverse(X0),X0) [input]

3. ! [X0,X1,X2] : mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]

4. ! [X0] : e = mult(X0,X0) [input]

5. ! [X0] : mult(X0,X1) = mult(X1,X0) [input]

6. ~! [X1] : ! [X0] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]

7. ~! [X0] : ! [X1] : mult(X0,X1) = mult(X1,X0) [rectify 6]

8. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [flattening 7]

9. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 8]

10. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 9]

11. mult(e,X0) = X0 [cnf transformation 1]

12. e = mult(inverse(X0),X0) [cnf transformation 2]

13. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]

14. e = mult(X0,X0) [cnf transformation 4]

15. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 10]

16. ~sP2(mult(sK0,sK1)) [inequality splitting name introduction]

17. sP2(mult(sK1,sK0)) [inequality splitting 15,16]

18. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 13,14]

22. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 13,14]

20. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 13,12]

24. mult(X0,mult(X0,X1)) = X1 [forward demodulation 18,11]

25. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 20,11]

30. mult(inverse(X2),e) = X2 [superposition 24,12]

74. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 25,22]

90. mult(X2,mult(X1,X2)) = X1 [forward demodulation 74,30]

126. mult(X1,X2) = mult(X2,X1) [superposition 24,90]

134. sP2(mult(sK0,sK1)) [backward demodulation 126,17]

135. $false [subsumption resolution 134,16]
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Figure 1: A Vampire proof

2.2 Proof Output Formats and Typesetting in LATEX

Vampire produces various kinds of proof. If one were to run vampire -explain proof then
Vampire 4.1 would print the explanation:

--proof (-p)

Specifies whether proof will be output. ’proofcheck’ will output proof

as a sequence of TPTP problems to allow for proof-checking.

default: on

values: off,on,proofcheck,tptp,smtcomp

The off value will suppress any proof output and on will produce proofs in the Vampire-specific
proof format shown above (Figure 1). We find this proof format to be the most concise. The
proofcheck value will be discussed further in Section 6. The last two values tptp and smtcomp
produce proof output in these standardised formats. The TPTP format [12] was designed to be
machine parsable and compatible with the TPTP problem language. As SMTCOMP doesn’t
require or support proofs yet, this proof output just prints sat, unsat or unknown as supported
by that competition.
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More on TPTP proofs. This format1 [12] requires each proof step to be recorded as an
annotated formula of the form

language(name,role,formula,source,useful info).

Vampire will use fof for the language if no theories are present and tff otherwise2. If the
proof uses the tff language then it will also include any necessary type declarations, ensuring
that the proof is itself a valid TPTP problem file. Vampire uses the suggested roles of axiom,
conjecture, and negated_conjecture for those formulas and plain for inferred formulas. The
source part is one of three kinds:

• file sources describe the file the input formula comes from (and the axiom name in that
file if the --output_axiom_names option is on).

• inference source describes an inference. Typically this will include the name of the
inference rule and the names of the premises, similar to the Vampire format.

• introduced source describes introduced symbols3, listing the symbols introduced in the
proof step. Vampire also uses this source for theory and equality axioms that do not
introduce new symbols but are not input axioms.

The first and last source parts indicate proof steps without parents. Vampire doesn’t currently
use the useful info part of annotated formulas but may do so in the future to capture infor-
mation such as unification positions. Figure 8 (introduced later in Section 5) gives an example
of a proof in the TPTP format.

LATEX output. As well as producing textual proofs, Vampire can also produce proofs in
LATEXby using the --latex output option. This will output a LATEX file into the given file
to produce a proof. For example, Figure 2 gives a proof of Peirce’s law produced by Vam-
pire in this way. All LATEX proof steps given in this paper (and any paper we write using
Vampire) are produced in this way. Other modes can also produce LATEX output. For exam-
ple, vampire --mode clausify --latex_output clauses.tex problem.p will print a LATEX
representation of the clausified problem into clauses.tex.

2.3 Possible Proof Steps

For completeness, we provide an (incomplete!) list of steps that can appear in a Vampire proof.

• Inputs:

– input: an input formula

– negated conjecture: the conjecture in negated form

– equality/theory axiom: assumed axioms not in the input

• Preprocessing:

– flattening, rectify, *nf transformation, skolemisation: clausification steps (see [10])

– FOOL *: elimination of FOOL elements (see [3, 4])

– equality proxy *: used to axiomatise equality (necessary for InstGen)

– definition unfolding, unused predicate definition removal, pure predicate removal: elimi-
nating function and predicate definitions and pure predicates

1See http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html for a quick quide.
2See [6] for a discussion of how Vampire deals with theories in general.
3See http://www.cs.miami.edu/~tptp/TSTP/NewSymbolNames.html for this TPTP convention.
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[7, 6→ 8, resolution]

p
¬p
2

[4→ 6, cnf transformation]

(p ∨ p) ∧ ¬p

¬p

[5→ 7, duplicate literal removal]

p ∨ p
p

[4→ 5, cnf transformation]

(p ∨ p) ∧ ¬p
p ∨ p

[3→ 4, ennf transformation]

¬((¬p → p)→ p)

(p ∨ p) ∧ ¬p

[2→ 3, pure predicate removal]

¬(((p → q)→ p)→ p)

¬((¬p → p)→ p)

[1→ 2, negated conjecture]

((p → q)→ p)→ p

¬(((p → q)→ p)→ p)

[1, input]

((p → q)→ p)→ p

Figure 2: The LATEX version of a Vampire proof of Peirce’s Law.

– predicate definition introduction, definition folding: naming subformulas (see Section 3)

– general splitting: splitting a clause by naming subclauses (see Section 3)

– inequality splitting: split a clause based on an inequality

• Simplification:

– duplicate literal removal, trivial inequality removal, distinct equality removal: literal re-
moval operations

– evaluation: evaluating ground theory terms

• Superposition and Resolution Calculus:

– resolution

– subsumption resolution

– superposition

– equality factoring

– equality resolution
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1. ? [X0] : ! [X1] : ? [X2] : p(X0,X1,X2) [input]

2. ? [X0,X1] : p(X0,a,X1) [input]

3. ~? [X0,X1] : p(X0,a,X1) [negated conjecture 2]

4. ! [X0,X1] : ~p(X0,a,X1) [ennf transformation 3]

5. ? [X0] : ! [X1] : ? [X2] : p(X0,X1,X2) => ! [X1] : ? [X2] :

p(sK0,X1,X2) [choice axiom]

6. ! [X1] : (? [X2] : p(X0,X1,X2) => p(X0,X1,sK1(X1))) [choice axiom]

7. ! [X1] : p(sK0,X1,sK1(X1)) [skolemisation 1,6,5]

8. p(sK0,X1,sK1(X1)) [cnf transformation 7]

9. ~p(X0,a,X1) [cnf transformation 4]

10. $false [resolution 8,9]

Figure 3: Example proof using Skolemisation.

– backward/forward demodulation

– unit resulting resolution

• Other:

– avatar *: steps relating to AVATAR, see Sec. 5 (previously splitting *)

– extensionality resolution: a special inference step (see [2])

– instance generation: from the InstGen calculus (see [8])

– global subsumption: a useful simplification step (see [7, 8])

New inference steps may appear and existing steps may be renamed as Vampire is under
constant development.

3 Proof Steps that Introduce Symbols

This section focuses on proof steps that introduce new symbols. Recall that the source nodes
of a proof DAG are either input axioms, other assumed axioms (such as equality or theory
axioms) or definitions of new symbols.

Skolemization

Consider the problem consisting of the axiom ∃x∀y∃z(p(x, y, z)) and conjecture ∃x, y(p(x, a, y)).
To show that this is a theorem we need to translate the problem into clausal normal form.
One necessary step is Skolemization. In this case the axiom is translated into the clause
p(sk0, y, sk1(y)) where sk0 is a fresh Skolem constant and sk1 is a fresh Skolem function. To
justify the choice of this new constant we use the following axiom, referred to as a choice axiom:

(∃x : ∀y : ∃z : p(x, y, z))⇒ (∀y : ∃z : p(sk0, y, z))

This captures the choice that sk0 is being used to witness the existentially quantified variable
x. Note that this is sound as sk0 is a fresh constant.

The Vampire proof that the problem is a theorem is given in Figure 3. Note how two choice
axioms (5 and 6) are introduced as source nodes of the proof and are then used in the single
Skolemisation step (7).
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1. s(X1,X2) | r(X0,X1) | p(X0,X1) [input]

2. ~p(X1,X1) | s(X0,X0) [input]

3. ~s(a,a) [input]

4. ~r(a,a) [input]

5. s(X1,X2) | sP0(X1) [general splitting component introduction]

6. r(X0,X1) | p(X0,X1) | ~sP0(X1) [general splitting 1,5]

7. s(X0,X0) | sP1 [general splitting component introduction]

8. ~p(X1,X1) | ~sP1 [general splitting 2,7]

9. sP1 [resolution 7,3]

10. sP0(a) [resolution 5,3]

11. p(a,a) | ~sP0(a) [resolution 6,4]

12. p(a,a) [subsumption resolution 11,10]

13. ~sP1 [resolution 12,8]

14. $false [subsumption resolution 13,9]

Figure 4: Example proof using General Splitting.

General Splitting

This is a preprocessing step that aims to produce shorter and simpler clauses. It is different
from the clause-splitting employed by AVATAR (see Section 5) as it only happens once, hence
is allowed to be more expensive. The main difference is the way in which clauses are split. In
AVATAR clauses are split into components i.e. minimal variable-disjoint subclauses. However,
in general splitting subclauses do not need to be variable-disjoint. Instead, a fresh predicate
can be introduced to join the two subclauses on shared variables. As usual, we proceed by
example.

Consider the following set of clauses

p(x, y) ∨ r(x, y) ∨ s(y, z)
s(x, x) ∨ ¬p(y, y)
¬s(a, a)
¬r(a, a)

Figure 4 gives the Vampire proof of the unsatisfiability of this clause set. The interesting
parts are how the first two clauses in the clause set are split. The clause p(x, y)∨r(x, y)∨s(y, z)
is split into the clauses s(y, z)∨sP0(y) and r(x, y)∨p(x, y)∨¬sP0(y). The clause s(x, x)∨¬p(y, y)
is split into the clauses s(x, x)∨sP1 and ¬p(y, y)∨¬sP1, in this case there are no shared variables
and therefore a propositional symbol can be used for splitting.

As a side-note, the introduced symbols are placed at the end of the symbol ordering, meaning
that they will be the last literals to be selected for resolution etc. This is important, otherwise
the first steps of any resolution proof would be to undo the splitting. This can be seen in the
proof of Figure 4 i.e. resolving on these literals is delayed until they are units.

Subformula Naming

This is a preprocessing step that aims to minimise the number of clauses produced during
clausification. See [10] for further discussion of the technique. The general idea is to name
subformulas to avoid (exponential) explosion when expanding operators such as equivalence or
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1. (h & g & f) | (s & r & q & p) [input]

2. ~p & ~f [input]

3. (s & r & q & p) | ~sP0 [predicate definition introduction]

4. (h & g & f) | sP0 [definition folding 1,3]

5. (s & r & q & p) | ~sP0 [nnf transformation 3]

6. ~sP0 | p [cnf transformation 5]

10. sP0 | f [cnf transformation 4]

13. ~f [cnf transformation 2]

14. ~p [cnf transformation 2]

18. f | p [resolution 10,6]

22. p [subsumption resolution 18,13]

23. $false [subsumption resolution 22,14]

Figure 5: Example proof using Subformula Naming.

distributing conjunction over disjunction. This second case will be the source of our (simple)
example. Consider the two formulas:

(p ∧ q ∧ r ∧ s) ∨ (f ∧ g ∧ h)
¬f ∧ ¬p

Without subformula naming this would expand into 14 clauses, with subformula naming it
expands into 9 clauses.

Figure 5 gives the Vampire proof of unsatisfiability for these two formulas4. The two key
proof steps are predicate definition introduction (3) and definition folding (4). The definition for
the subformula is first introduced as a source node in the proof DAG, and then it is folded into
the input clause to produce a simpler formula.

4 Representing Unifiers in Proofs

A common request from users is to make the unifiers used in proof steps more explicit. There are
a few reasons for this. Firstly, to make proofs more readable, it can be difficult to understand
how the inference steps have been applied without information about unification. Secondly,
some automated analysis of proofs need this information and extracting it, whilst possible, can
be difficult as it is necessary to find the positions in each clause to apply unification. Finally,
this information may help with proof checking, a process discussed later in Section 6. The ideas
in this section can be triggered using the proof_extra option; see the explanation from your
version of Vampire to see what is currently supported as this is an experimental feature.

Many proof steps, such as resolution, superposition and their variants, unify some parts of
two clauses to apply the inference. For example, take the following superposition inference rule:

l ' r ∨ C1 t[s] ' t′ ∨ C2

(t[r] ' t′ ∨ C1 ∨ C2)θ

where θ is a most general unifier of l and s; s is not a variable; rθ 6� lθ; and t′θ 6� t[s]θ. To
apply the rule one must (i) find the location to perform the unification i.e. the subterm s, and

4Note that to produce this proof we turn of updr, which would simplify the formulas before subformula
naming is applied.
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(ii) attempt to produce the most general unifier. Consider the application of the rule in the
following proof step from the proof given in Figure 1.

e = mult(inverse(x), x) mult(x,mult(x, y)) = y

mult(inverse(z), e) = z

Here l = mult(inverse(z), z) (after variable-renaming) and s = mult(x, y), making the unifier
θ = [x 7→ inverse(z), y 7→ z]. The question is then how to represent this information in the
proof? Once choice would be to give the unifier and positions explicitly. However, this seems
redundant as the unifier could be computed from the positions. Therefore, one experimental
choice in Vampire is to output position information. The above proof step would be printed as:

13. e = mult(inverse(X0),X0) (0:6:1) [cnf transformation 2]

23. mult(X0,mult(X0,X1)) = X1 (1:7:1) [forward demodulation 17,12]

29. mult(inverse(X2),e) = X2 (2:6:1)

[superposition 23,13, 13 into 23, unify on (0).2 in 13 and (0).1.2 in 23]

This identifies the positions in the two premises using the standard position naming scheme
(i.e. ordered branches in the syntax tree). However, whilst this can be used to reconstruct the
unifier it does not improve readability and may not be that useful for automated techniques. An
alternative idea is to apply the unifiers to produce instances of the premises and then perform
all inferences without unification. For example, consider the same proof step written as follows:

mult(x,mult(x, y)) = y
mult(inverse(z),mult(inverse(z), z)) = z

e = mult(inverse(x), x)

e = mult(inverse(z), z)

mult(inverse(z), e) = z

The above unifier is applied to each side; on the right-side this involves renaming the vari-
ables, an implicit step in unification that Vampire avoids where possible by (effectively) pro-
ducing a symmetric unifier for each side. Now the unifier can be extracted by unifying the
instantiated clause with the initial clause. The positions at which unification occurred can be
seen from the places where the two clauses differ.

As a further example of this second approach consider the following (inconsistent) clauses:

p(f(x, a), g(h(y, x), b)) ∨ a 6= f(x)
¬p(f(g(h(a, a)), x), y)

k(x) 6= k(h(a, a)) ∨ f(g(x)) = a

Figure 6 gives a Vampire proof of this inconsistency where the above technique has been ap-
plied. This involves three instantiations and in each case the inferences (equality resolution,
superposition and subsumption resolution) are performed without unification. In some
cases, for example equality resolution (5) the inference step could be replaced by a simpler
inference (trivial inequality removal) but the inference rule is preserved to demonstrate
the reasoning.

We note that unifiers and positions are not the whole story. Inference rules, such as the
superposition rule above, also rely on literal selection and term orderings. As you may have
noticed from above, the proofs provided by the proof_extra options include an extra tuple, e.g.
(2:6:1), which gives the (age:weight:selected) where selected indicates the number of
selected literals, which always appear at the front of the clause (see [10] for further discussion of
literal selection). Vampire doesn’t currently output information on term ordering, but currently
this should be inferable from the options defining it and the other information available.
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1. a != f(X0) | p(f(X0,a),g(h(X1,X0),b)) (0:13:1) [input]

2. ~p(f(g(h(a,a)),X0),X1) (0:8:1) [input]

3. k(X0) != k(h(a,a)) | a = f(g(X0)) (0:12:1) [input]

4. k(h(a,a)) != k(h(a,a)) | a = f(g(h(a,a))) (0:16) [instantiation 3]

5. a = f(g(h(a,a))) (1:7:1) [equality resolution 4]

6. a != f(g(h(a,a))) | p(f(g(h(a,a)),a),g(h(X0,

g(h(a,a))),b)) (0:22) [instantiation 1]

8. a != a | p(f(g(h(a,a)),a),g(h(X0,g(h(a,a))),b)) (2:18) [superposition 6,5]

9. p(f(g(h(a,a)),a),g(h(X0,g(h(a,a))),b)) (2:15) [trivial inequality removal 8]

11. ~p(f(g(h(a,a)),a),g(h(X0,g(h(a,a))),b)) (0:15) [instantiation 2]

12. $false (2:0) [subsumption resolution 9,11]

Figure 6: An example proof where unifiers are shown via instantiation.

5 AVATAR Proofs

AVATAR is a framework for clause splitting that uses a SAT solver to make splitting decisions.
This involves introducing propositional names for subclauses and labelling clauses with these
names to represent their splitting context. As a further complication, the refutation typically
comes from the SAT solver. Previously the way that AVATAR appeared in proofs was quite
opaque. This section presents an improved method for writing proofs that make use of AVATAR.

For a full overview of AVATAR we refer the reader to previous publications [13, 9, 8]; indeed,
this section may be difficult to follow without some understanding of AVATAR. In this section
we consider the worked example from [9]. This example uses the inconsistent clauses

q(b) p(x) ∨ r(x, z) ¬q(x) ∨ ¬s(x) ¬p(x) ∨ ¬q(y) s(z) ∨ ¬r(x, z) ∨ ¬q(w)

The Vampire proof of inconsistency is given in Figure 7. In this proof there is a new kind of
symbol used in the form of integers, let us call these assumptions. Clauses may have assumptions
capturing the splitting context they are applicable to. For example, if the unit clause s(X0) is
dependent on the assumptions 1 and 4 this would be written as s(X0) <- {0, 4}. There are
five inference rules related to AVATAR and these new assumptions:

• avatar definition. This rule introduces definitions for assumptions. As assumptions
name components the definition captures this naming. The rule introduces the assumption
as a fresh symbol and is source node in the proof DAG.

• avatar component clause. This rule introduces the clause derived from the definition
that is used in proof search. This indicates that the component is dependent on the
assumption that names it.

• avatar split clause. This rule uses the definitions to rewrite an existing clause. The
rewritten clause will always appear first in the list of premises. This split clause is the
propositional clause passed to the SAT solver to make splitting decisions i.e. at least one
component needs to be selected in a splitting context.

• avatar contradiction clause. This rule uses the definitions to rewrite a conditional
contradiction into a propositional clause for the SAT solver. In AVATAR proofs it is
common to derive $false conditionally many time as each such conditional contradiction
represents switching splitting context. However, not all such conditional contradictions
will be relevant to the proof.
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1. q(b) [input]

2. r(X0,X1) | p(X0) [input]

3. ~s(X0) | ~q(X0) [input]

4. ~q(X2) | ~p(X0) [input]

5. ~q(X3) | ~r(X0,X1) | s(X1) [input]

7. 0 <=> ! [X0] : ~p(X0) [avatar definition]

8. ~p(X0) <- {0} [avatar component clause 7]

10. 2 <=> ! [X2] : ~q(X2) [avatar definition]

11. ~q(X2) <- {2} [avatar component clause 10]

12. 0 | 2 [avatar split clause 4,10,7]

14. 4 <=> ! [X1,X0] : (~r(X0,X1) | s(X1)) [avatar definition]

15. ~r(X0,X1) | s(X1) <- {4} [avatar component clause 14]

16. 4 | 2 [avatar split clause 5,10,14]

17. $false <- {2} [resolution 11,1]

18. ~2 [avatar contradiction clause 17,10]

19. s(X0) | p(X1) <- {4} [resolution 15,2]

20. s(X0) <- {0, 4} [subsumption resolution 19,8]

21. ~q(X0) <- {0, 4} [resolution 20,3]

22. 2 | ~0 | ~4 [avatar split clause 21,14,7,10]

23. $false [avatar sat refutation 12,16,18,22]

Figure 7: Example proof using AVATAR.

• avatar sat refutation. This rule derives a contradiction from the propositional clauses
in the SAT solver i.e. the avatar split clause and avatar contradiction clause

bits. The rest of the proof has been about showing how these clauses were derived to
end up in the SAT solver to produce a contradiction. Note that a SAT contradiction will
typically not involve all SAT clauses passed to the SAT solver. Previously versions of
Vampire sometimes reported all such clauses, leading to very large AVATAR proofs.

Hopefully this explanation, perhaps coupled with the worked example from [9], is enough to
understand the proof in Figure 7. If not, the show_avatar option prints information relevant
to AVATAR during proof search (but will slow down proof search).

One benefit of this presentation is that the relevant contents of the SAT solver is immediately
evident. If we take the relevant inference rules:

12. 0 | 2 [avatar split clause 4,10,7]

16. 4 | 2 [avatar split clause 5,10,14]

18. ~2 [avatar contradiction clause 17,10]

22. 2 | ~0 | ~4 [avatar split clause 21,14,7,10]

and strip the unnecessary parts then perform some small formatting operations5 we get the
following problem in the DIMACS format [1] that can be passed to a SAT solver:

p cnf 4 4

1 3 0

5 3 0

5Note that we shifted the variables up one as the DIMACS format reserves 0. This may also need to be
normalised so that there are no gaps in the numbering, depending on the SAT solver.
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-3 0

3 -1 -5 0

We note that the TPTP proofs using AVATAR are slightly different as we have to stay
within the TPTP requirements. Figure 8 gives the proof of Figure 7 in the TPTP format. Here
assumptions are turned into fresh propositional symbols and treated accordingly.

6 A Note on Proof Checking

Proof checking is very important, as discussed in the introduction. If we cannot check that
the proof we have produced is correct then we have little confidence in its correctness beyond
agreement from other solvers, which may not exist.

To help with proof checking, Vampire can translate its proofs into a series of TPTP problems
that can be independently checked. A problem is generated per proof step having the premises
as axioms and the conclusion as a conjecture. For example, running the following command
(with Vampire 4.1) produces the output given in Figure 9.

vampire --decode dis+1002_4_inst=on:tha=off:thf=on_1

Problems/MSC/MSC023=2.p -p proofcheck

This output separates problems for each proof step using the %# comment to allow for
automatic splitting of the problems. Each problem includes the necessary symbol declarations
in the tff logic.

The author has a script that passes each problem to a configurable set of independent solvers.
This is used during the development of Vampire to check soundness (and can be obtained from
the author on request). It, however, has some shortcomings as it cannot handle all preprocessing
steps or SAT-based steps such as AVATAR refutation and Global Subsumption.

The set of problems given in Figure 9 have been passed to a set of independent solvers
and verified. During our testing it is unusual for a proof step to be unverifiable by any other
solver, although it is interesting to note that these proof steps often present difficult problems
in themselves e.g. sometimes only one other solver can find a proof and sometimes requiring
longer than the original Vampire proof.

The TPTP framework includes a similar tool6 [11] that the author has not used and cannot
comment on the structure of.

7 Conclusion

Vampire has produced readable and usable proofs for a long time. This report discusses the
current state of affairs and claims that they are ‘better’ than they were at some point in the
past. The improvements introduced for this paper are an updated presentation of AVATAR
proofs and new ideas about how unifiers can be displayed in proofs.

Vampire is under constant development and future work in the area of proof output includes:

• Fully incorporating the ideas of Section 4. Currently these are hidden behind a proof_extra
option and their implementation has not been optimised.

• Producing proofs in a SMT-LIB compatible format, particularly for proof checking.

6See http://www.cs.miami.edu/~tptp/ServiceTools.tgz
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fof(f1,axiom,(

q(b)),

file(’MyProblems/avatar_proof.p’,unknown)).

fof(f2,axiom,(

( ! [X0:$i,X1:$i] : (r(X0,X1) | p(X0)) )),

file(’MyProblems/avatar_proof.p’,unknown)).

fof(f3,axiom,(

( ! [X0:$i] : (~s(X0) | ~q(X0)) )),

file(’MyProblems/avatar_proof.p’,unknown)).

fof(f4,axiom,(

( ! [X2:$i,X0:$i] : (~q(X2) | ~p(X0)) )),

file(’MyProblems/avatar_proof.p’,unknown)).

fof(f5,axiom,(

( ! [X0:$i,X3:$i,X1:$i] : (~q(X3) | ~r(X0,X1) | s(X1)) )),

file(’MyProblems/avatar_proof.p’,unknown)).

fof(f7,plain,(

spl0_0 <=> ! [X0] : ~p(X0)),

introduced(avatar_definition,[new_symbols(naming,[spl0_0])])).

fof(f8,plain,(

( ! [X0:$i] : (~p(X0)) ) | ~spl0_0),

inference(avatar_component_clause,[],[f7])).

fof(f10,plain,(

spl0_2 <=> ! [X2] : ~q(X2)),

introduced(avatar_definition,[new_symbols(naming,[spl0_2])])).

fof(f11,plain,(

( ! [X2:$i] : (~q(X2)) ) | ~spl0_2),

inference(avatar_component_clause,[],[f10])).

fof(f12,plain,(

spl0_0 | spl0_2),

inference(avatar_split_clause,[],[f4,f10,f7])).

fof(f14,plain,(

spl0_4 <=> ! [X1,X0] : (~r(X0,X1) | s(X1))),

introduced(avatar_definition,[new_symbols(naming,[spl0_4])])).

fof(f15,plain,(

( ! [X0:$i,X1:$i] : (~r(X0,X1) | s(X1)) ) | ~spl0_4),

inference(avatar_component_clause,[],[f14])).

fof(f16,plain,(

spl0_4 | spl0_2),

inference(avatar_split_clause,[],[f5,f10,f14])).

fof(f17,plain,(

$false | ~spl0_2),

inference(resolution,[],[f11,f1])).

fof(f18,plain,(

~spl0_2),

inference(avatar_contradiction_clause,[],[f17,f10])).

fof(f19,plain,(

( ! [X0:$i,X1:$i] : (s(X0) | p(X1)) ) | ~spl0_4),

inference(resolution,[],[f15,f2])).

fof(f20,plain,(

( ! [X0:$i] : (s(X0)) ) | (~spl0_0 | ~spl0_4)),

inference(subsumption_resolution,[],[f19,f8])).

fof(f21,plain,(

( ! [X0:$i] : (~q(X0)) ) | (~spl0_0 | ~spl0_4)),

inference(resolution,[],[f20,f3])).

fof(f22,plain,(

spl0_2 | ~spl0_0 | ~spl0_4),

inference(avatar_split_clause,[],[f21,f14,f7,f10])).

fof(f23,plain,(

$false),

inference(avatar_sat_refutation,[],[f12,f16,f18,f22])).

Figure 8: Example proof using AVATAR in TPTP format.58
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tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r8,conjecture, ( ! [X0:$real] : (celsius_fahrenheit_temperature_conversion(X0,

$sum($product(1.8,X0),32.0))) ) ). %equality resolution

tff(pr7,axiom, ( ! [X0:$real,X1:$real] : (celsius_fahrenheit_temperature_conversion(X0,

X1) | $sum($product(1.8,X0),32.0) != X1) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r9,conjecture, ( ! [X0:$real,X1:$real] : (~celsius_fahrenheit_temperature_conversion(X0,

X1) | 451.0 != X1) ) ). %theory flattening

tff(pr6,axiom, ( ! [X0:$real] : (~celsius_fahrenheit_temperature_conversion(X0,451.0)) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r10,conjecture, ( ! [X0:$real,X1:$real] : ($sum($product(1.8,X0),32.0) != X1 |

celsius_fahrenheit_temperature_conversion(X0,X1)) ) ). %theory flattening

tff(pr8,axiom, ( ! [X0:$real] : (celsius_fahrenheit_temperature_conversion(X0,

$sum($product(1.8,X0),32.0))) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r23,conjecture, ( ! [X0:$real] : (celsius_fahrenheit_temperature_conversion(X0,

$sum($product(1.8,X0),32.0))) ) ). %equality resolution

tff(pr10,axiom, ( ! [X0:$real,X1:$real] : ($sum($product(1.8,X0),32.0) != X1 |

celsius_fahrenheit_temperature_conversion(X0,X1)) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r41,conjecture, ( ! [X0:$real] : ($sum($product(1.8,X0),32.0) != 451.0) ) ). %resolution

tff(pr23,axiom, ( ! [X0:$real] : (celsius_fahrenheit_temperature_conversion(X0,

$sum($product(1.8,X0),32.0))) ) ).

tff(pr9,axiom, ( ! [X0:$real,X1:$real] : (~celsius_fahrenheit_temperature_conversion(X0,

X1) | 451.0 != X1) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r51,conjecture, ( ! [X0:$real] : (quotient($sum(451.0,-32.0),1.8) != X0) ) ). %evaluation

tff(pr41,axiom, ( ! [X0:$real] : ($sum($product(1.8,X0),32.0) != 451.0) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r52,conjecture, ( ! [X0:$real] : (quotient(419.0,1.8) != X0) ) ). %evaluation

tff(pr51,axiom, ( ! [X0:$real] : (quotient($sum(451.0,-32.0),1.8) != X0) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r53,conjecture, ( ! [X0:$real] : (232.778 != X0) ) ). %evaluation

tff(pr52,axiom, ( ! [X0:$real] : (quotient(419.0,1.8) != X0) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r55,conjecture, 232.778 != 232.778 ). %Instantiation

tff(pr53,axiom, ( ! [X0:$real] : (232.778 != X0) ) ).

%#

tff(pred_def_1, type, celsius_fahrenheit_temperature_conversion: ($real * $real) > $o).

tff(r59,conjecture, $false ). %trivial inequality removal

tff(pr55,axiom, 232.778 != 232.778 ).

%#

Figure 9: Example proofcheck output for the problem MSC023=2.p.
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• Extending proof-checking to cover all preprocessing steps and produce the necessary DI-
MACS file for SAT-based refutations (e.g. AVATAR and Global Subsumption).

• Developing an API where Vampire can be called and a proof object is returned (where
appropriate) which can be queried for properties such as unifiers and term orderings.

Finally, if the reader has any requests for improvements in proof output or any other features
of Vampire then please contact the author. Similarly for bug reports.
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Voronkov, editors, Proceedings of the 1st and 2nd Vampire Workshops, volume 38 of EPiC Series
in Computing, pages 63–69. EasyChair, 2016.

[9] Giles Reger, Martin Suda, and Andrei Voronkov. Playing with avatar. In P. Amy Felty and
Aart Middeldorp, editors, Automated Deduction - CADE-25: 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pages 399–415. Springer
International Publishing, 2015.

[10] Giles Reger, Martin Suda, and Andrei Voronkov. New Techniques in Clausal Form Generation.
In C. Benzmüller, G. Sutcliffe, and R. Rojas, editors, Proceedings of the 2nd Global Conference on
Artificial Intelligence, EPiC Series in Computing, page To appear. EasyChair Publications, 2016.

[11] G. Sutcliffe. Semantic Derivation Verification. International Journal on Artificial Intelligence
Tools, 15(6):1053–1070, 2006.

[12] G. Sutcliffe, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language for Writing
Derivations and Finite Interpretations. In U. Furbach and N. Shankar, editors, Proceedings of the
3rd International Joint Conference on Automated Reasoning, number 4130 in Lecture Notes in
Artificial Intelligence, pages 67–81, 2006.

[13] Andrei Voronkov. AVATAR: The architecture for first-order theorem provers. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification, volume 8559 of Lecture Notes in Computer
Science, pages 696–710. Springer International Publishing, 2014.

60

http://www.cs.ubc.ca/~{}hoos/SATLIB/Benchmarks/SAT/satformat.ps
http://www.cs.ubc.ca/~{}hoos/SATLIB/Benchmarks/SAT/satformat.ps

	Introduction
	Background on Proofs in Vampire
	What is a Proof?
	Proof Output Formats and Typesetting in LaTeX
	Possible Proof Steps

	Proof Steps that Introduce Symbols
	Representing Unifiers in Proofs
	AVATAR Proofs
	A Note on Proof Checking
	Conclusion

